
Chapter 1 Exercises

Exercise 1.

The following expressions are sentential functions: (a), (d), (e), (h). The
rest ((b), (c), (f), (g)) are designatory.

Exercise 2.

For an example of a sentential function from geometry, the Pythagorean
Theorem works: a2 + b2 = c2. For an example of a designatory function, we
can use the formula for the area of a circle: πr2.

Exercise 3.

(a) Category (ii), since no number can have x = x+ 3

(b) Category (iii), since this equation is satisfied by 7 and -7.

(c) Category (i). Expanding (y + 2)(y − 2) < y2 we get y2 − 4 < y2 which
is true for all y ∈ R.

(d) Category (iii), since this equation is satisfied by any y ≥ 13.

(e) Category (i), since this is true for all z ∈ R.

(f) Category (ii), since this would require z > z + 12, which is never true.

Exercise 4.

For an example of a universal theorem from arithmetic, we can use the
associative property of addition: ∀x, y ∈ Z x+ y = y + x.

For an absolutely existential theorem, consider defining a simple prop-
erty: ∃x ∈ Z such that x+1 > 2. Then this is true for (amongst many other
numbers...) x = 2.

For a conditionally existential theorem, we can define another simple
property: ∀x ∈ Z,∃y ∈ Z such that x + y = 10. Then, given any choice of
x ∈ Z, define y = 10−x. Then x+(10−x) ⇒ x+10+(−x) ⇒ x+(−x)+10 =
10.
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Exercise 5.

(i) ∀x, y x > y. This is false, since x = 1, y = 2 is a counterexample.

(ii) ∃x, y such that x > y. This is true, since letting x = 2, y = 1 satisfies
the statement.

(iii) ∀x,∃y such that x > y. This is true as well, since for any x ∈ Z, let
y = x+ 1.

(iv) ∃x such that ∀y, x > y. This is false, since this is to say that there is
a biggest x in Z. For any x, y = x+ 1 works as a counterexample.

(v) ∀y, ∃x such that x > y. This is true. For any y, pick x = y + 1.

(vi) ∃y such that ∀x, x > y. This is false, since this would be to say
that there is a smallest y in Z. For any y, x = y − 1 works as a
counterexample.

Exercise 6.

For the first sentential function:

x+ y2 > 1 (1)

(i) ∀x, y x+ y2 > 1. This is false. Take x = 0, y = 1 as a counterexample.

(ii) ∃x, y such that x+ y2 > 1. This is true. Let x = 1 y = 2.

(iii) ∀x, ∃y such that x+y2 > 1. This is true. Now, prove this for all x ∈ R.

Proof.

(x = 0) Let y = 2. Then plugging into (1) we get 0 + (2)2 = 0 + 4 =
4 > 1.

(x > 0) In this case, let y = x+1. Plugging into (1) we have (x)+(x+1)2.
Expanding the second term we have x+ (x2 + 2x+ 1). This simplifies
into x2+3x+1. Since x > 0, 3x > 0 and x2 > 0. Then x2+3x+1 > 1.
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(x < 0) In this case, let y = x − 1. Then plugging into (1) we have
x+ (x− 1)2. Expanding the second term gives x+ (x2 − 2x+ 1), and
simplifying we have (x2 − x + 1). But then since x < 0, x2 > 0 and
−x > 0, so x2 − x+ 1 > 1.

(v) ∃x such that ∀y, x+ y2 > 1. This is true as well. Let x = 2. Then, for
any y ∈ R, y2 ≥ 0, so 2 + y2 ≥ 2 > 1.

(vi) ∀y, ∃x such that x+ y2 > 1. This is true, since for any y ∈ R, y2 ≥ 0.
Regardless of y, let x = 2. Then we have 2 + y2 ≥ 2 + 0 = 2 > 1.

(vii) ∃y such that ∀x, x + y2 > 1. This is false. For any choice of y, this
fails at x = −(y2), since then we have −(y2) + y2 = 0 < 1.

For the second sentential function:

x is the father of y

(i) ∀x, y, x is the father of y. This is false, since this would require that
for any two people x and y chosen at random that x be y’s father. But
I am not my girlfriend’s father.

(ii) ∃x, y such that x is the father of y. This is true, since it only requires
that there exist one father-child pair. For instance, I am my father’s
daughter.

(iii) ∀x, ∃y such that x is the father of y. This is false, since it would require
that every person x be a father to a child y. But I am not anyone’s
father.

(iv) ∃x such that ∀y, x is the father of y. This is false, since it would
suppose that there is a single ”universal father”. But my father is not
my girlfriend’s father.

(v) ∀y, ∃x such that x is the father of y. This is true. Everyone has a
father, or else they would not have been born. Check back on this one
in a few hundred years if we ever develop cloning...

(vi) ∃y such that ∀x, x is the father of y. This is false, since it would require
that there be a single ”universal child”. But for any choice of person
y, pick any other person x such that x is not their father.
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Exercise 7.

Dogs have a good sense of smell.

Exercise 8.

If x is a snake, then there exists an x such that x is poisonous.

Exercise 9.

(a) Both x and y are free.

(b) In this expression x is bound since it appears first in a quantifier, but
y is free.

(c) All variables are bound in this expression, since we can evaluate the
truth of it now. This is true by the way - pick z = y + 1.

(d) In this expression y and z are bound, since none of their appearances
precede their appearance in a quantifier. However x is never quantified,
so it is a free variable.

(e) X and z are bound, since z occurs only after its quantification, and
x is bound by an operator (=) relating it to y. However, y is a free
variable.

(f) In this expression, y and z occur only after quantification, so they are
bound. Then x is free since evaluating the truth of the sentence will
depend on the value of x.

Exercise 10.

By replacing z with y in both places of 9(e), we obtain:

if x = y2 and y = 0, then, for any number y, x > −y2

Then in the first part if x = y2 and y = 0, y is free, since it has not yet
been quantified or assigned. However, in the second part for any number y,
x > −y2 y is bound, since it has been quantified here.
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Exercise 11.

If a variable occurs in a quantifier or is otherwise bound by some other
relational operator, then all subsequent appearances of the variable in the
expression will be as a bound variable. If the variable occurs in an expression
preceding its quantification, or in an expression where it is not quantified at
all, it will be as a free variable.

Exercise 12.

We’ll label the sentential function there is a number y such that x = y2

as (1) and there is a number y such that x · y = 1 as (2).

Since x in (1) is a free variable, we cannot yet evaluate the statement
without obtaining more info about x. So we’ll look at (2) first. In this case,
y is bound by quantification, and x is bound by an operator.

We can see that for this statement to be true, it must be that x = 1
y
.

Now let’s plug this into (1) to obtain x = 1
x2 . For x = 1

x2 to be true, it must
be that x3 = 1, which is only true for x = 1. Now, x = 1 satisfies (2) as well,
since (2) then reads as there is a number y such that 1 · y = 1, which is true,
since y = 1 works.

Thus, (1) and (2) are both satisfied only by the pair x = 1, y = 1.
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