
Chapter 4 Exercises

Exercise 1.

Given K = {x : x < 3
4
},

(0 ∈ K): This is true, since 0 < 3
4
.

(1 ∈ K): This is false, since 1 > 3
4
.

(2
3
∈ K): This is true, since 2

3
< 3

4
.

(3
4
∈ K): This is false, since 3

4
≮ 3

4

(4
5
∈ K): This is false, since 4

5
> 3

4

Exercise 2.

Let A be the set of all positive numbers, B be the set of all numbers less
than 3, C be the set of all numbers x such that x+ 5 < 8, and D be the set
of all numbers x satisfying the relation x < 2x.

We want to find out which of these four sets are identical and distinct
from one another. First, A is distinct from B and C since 4 ∈ A but 4 /∈ B
(as 4 > 3) and 4 /∈ B (since 4 + 5 = 9 > 8). However A = D since
A ⊂ D ∧ A ⊃ D:

(A ⊂ D): Let x ∈ A. Then x > 0, so 2x = x+ x > x and x ∈ D.

(A ⊃ D): Let x ∈ D. Then 2x > x so x ̸= 0 (since 0 ≯ 0) and x ≮ 0 (since then
2x < x), so we must have x > 0 and x ∈ A.

Then, A = D, so D ̸= B and D ̸= C also. Thus, the only remaining
thing to investigate is whether B and C are identical. They are:

(B ⊂ C): Let x ∈ B. Then x < 3. If x ≤ 0, then x + 5 ≤ 5 < 8 and x ∈ C.
Otherwise if x = 1, then 1+ 5 = 6 < 8, so x ∈ C and similarly if x = 2
since 2 + 5 = 7 < 8.

(B ⊃ C): Let x ∈ C. Then x + 5 < 8. Simplifying this expression we have
x < 8− 5 → x < 3. Then x ∈ B.
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Since B ⊂ C and B ⊃ C, B = C.

Exercise 3.

This refers to the area of a region. For example, from a givcen point, the
set of all points not exceeding the distance of a given line segment defines a
circular area surrounding the point, and if we take all the points less than
the distance of a given line segment from another line segment, we produce
a rectangular area.

Exercise 4.

If K and L are circles with a shared center point with radii rK < rL, then
we might say that the set of points L has L ⊃ K, since every point of K lies
within the area of L. The circumferences of K and L, however, are disjoint,
since there is no overlap between them.

Exercise 5.

(K = L): K

L

(K ⊂ L): L

K
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(K ⊃ L): K

L

(K ∩ L ̸= ∅): K

L

(K ∩ L = ∅): K L

Exercise 6.

(a). This is true. Let x ∈ [3, 5]. Then x ≥ 3 and x ≤ 5. Then 6 > 5, so
x ≤ 5 < 6 so x ∈ [3, 6].

(b). This is false. A counterexample is 4 ∈ [4, 7] but 4 /∈ [5, 10].
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(c). This is also false, since 5 ∈ [−3, 5] ut 5 /∈ [−2, 4].

(d). This is true. Let x ∈ [−5,−2]. Then x ≤ −2 and x ≥ −5. Then
−5 ≥ −7 so x ≥ 5 > 7 and −2 < 1 so x ≤ −2 < 1 and x ∈ [−7, 1].

(e). The intervals [2, 4] and [5, 8] are disjoint: if x ∈ [2, 4] then x ≥ 2 and
x ≤ 4. But then x ≤ 4 < 5 so x ≥ 5 cannot be true and x /∈ [5, 8].
Also if x ∈ [5, 8] then x ≥ 5, so x ≥ 5 > 4 so x ≤ 4 cannot be true and
x /∈ [2, 4].

(f). [3, 6] ⊃ [31
2
, 51

2
]. If x ∈ [31

2
, 51

2
], x ≥ 31

2
and x ≤ 51

2
. Then x ≤ 51

2
< 6

and x ≥ 31
2
> 3 so x ∈ [3, 6]. However [3, 6] ̸⊂ [31

2
, 51

2
] since 6 ∈ [3, 6]

but 6 /∈ [31
2
, 51

2
].

(g). [11
2
, 7] and [−2, 31

2
] intersect. They each have distinct elements: −2 ∈

[−2, 31
2
] but −2 /∈ [11

2
, 7] and 7 ∈ [11

2
, 7] but 7 /∈ [−2, 31

2
]. However,

2 ∈ [11
2
, 7] and 2 ∈ [−2, 31

2
].

Exercise 7.

No. We can see this by letting K = M . Then K ∩L = ∅ and K ∩M = ∅
but K ∩M = K = M .

Exercise 8.

(a). The formula (x = y) ↔ ∀K[(x ∈ K) ↔ (y ∈ K)] can be translated
x equals y if and only if for all classes K, x is a member of K if and
only if y is a member of K. This can be recognized as Liebniz’s Law.

(b). The formula (K = L) ↔ ∀x[(x ∈ K) ↔ (x ∈ L)] can be translated K
is identical to L if and only if for all individuals x, x is an element of K
if and only if x is an element of L. This is the second law given as an
example, which states that K and L are identical if they are subclasses
of each other.

To arrive at a definition for K ⊂ L instead of K = L, we would change
the bracketed equivalence on the right hand side to be an implication
instead: (K ⊂ L) ↔ ∀x[(x ∈ K) → (x ∈ L)]. Similarly, to get a
definition for K ⊃ L we take the converse of this implication: (K ⊃
L) ↔ ∀x[(x ∈ L) → (x ∈ K)].

Exercise 9.
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The figure below represents the situation.

A B

C

D

Then, we can see that ABD∪ACD = ACD (since no new points are added
to ACD, as ABD completely lies within ACD) and ABD ∩ ACD = ABD
(ABD completely lies within ACD so no points are subtracted).

Exercise 10.

These two exercises I believe are meant to be represented by pictures
to help build visual intuition of the notions of the intersection and sum of
classes.

(a). The picture displated below represents an arbitrary square in the man-
ner described. It might be a little hard to parse, but this represents
two right trapezoids.

(b). The picture displated below represents an arbitrary square in the man-
ner described.
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Exercise 11.

(a). This is true. We’ll demonstrate the equality by proving [2, 31
2
]∪ [3, 5] ⊂

[2, 5] and [2, 31
2
] ∪ [3, 5] ⊃ [2, 5].

(⊂): Let x ∈ [2, 31
2
] ∪ [3, 5]. Then x ∈ [2, 31

2
] so x ≥ 2, and since

x ∈ [3, 5] we know 2 < 3 ≤ x ≤ 5. Then 2 ≤ x ≤ 5 so x ∈ [2, 5].

(⊃): Let x ∈ [2, 5]. Then 2 ≤ x ≤ 5. Then, if x ≥ 3, x ∈ [3, 5] and
otherwise 2 ≤ x < 3 < 31

2
so x ∈ [2, 31

2
].

(b). This equality is false. As a counterexample, take −1 ∈ [−1, 2] ∪ [0, 3].
However, −1 /∈ [0, 2]. In actuality, [−1, 2] ∪ [0, 3] = [−1, 3]. Show this
by showing both sides of this equation contain one another:

(⊂): Let x ∈ [−1, 2]∪[0, 3]. Then either −1 ≤ x ≤ 2 and so −1 ≤ x < 3
and x ∈ [−1, 3], or 0 ≤ x ≤ 3 and so −1 < 0 ≤ x ≤ 3 and
x ∈ [−1, 3].

(⊃): Let x ∈ [−1, 3]. Then, if x < 0, we have −1 ≤ x < 0 and
so x ∈ [−1, 2] ⊂ [−1, 2] ∪ [0, 3]. Otherwise, 0 ≤ x ≤ 3 and
x ∈ [0, 3] ⊂ [−1, 2] ∪ [0, 3].

(c). This equality is also false. As a counterexample, take −2 ∈ [−2, 8].
Then x /∈ [3, 7] since −2 < 3 so −2 /∈ [−2, 8] ∩ [3, 7]. In actuality,
[−2, 8] ∩ [3, 7] = [3, 7]:

(⊂): Let x ∈ [−2, 8] ∩ [3, 7]. Then −2 ≤ x ≤ 8 and 3 ≤ x ≤ 7. We
notice that −2 < 3 ≤ x ≤ 7 < 8, so x ∈ [3, 7].

(⊃): Let x ∈ [3, 7]. Then, clearly x ∈ [3, 7]. But is x ∈ [−2, 8] also?
Yes, since −2 < 3 ≤ x ≤ 7 < 8, so x ∈ [−2, 8] and x ∈ [−2, 8] ∩
[3, 7].
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(d). This equality is also false. Take x ∈ [2, 3]. Then 2 ≤ x ≤ 3. But then,
if x ∈ [2, 41

2
]∩ [3, 5] also, we must have 3 ≤ x ≤ 5, so x ≤ 3 and x ≥ 3.

Thus x = 3. This means that any x ̸= 3 ∈ [2, 3] has x /∈ [2, 41
2
] ∩ [3, 5].

In actuality, [2, 41
2
] ∩ [3, 5] = [3, 41

2
]:

(⊂): Let x ∈ [2, 41
2
] ∩ [3, 5]. Then 2 ≤ x ≤ 4.5 and 3 ≤ x ≤ 5, but

noticing 2 < 3 ≤ x ≤ 41
2
< 5 we have x ∈ [3, 41

2
].

(⊃): Let x ∈ [3, 41
2
]. Then, 41

2
< 5 so x ∈ [3, 5] and 2 < 3 so x ∈ [2, 41

2
].

Exercise 12.

Let K and L be two arbitrary classes with K ⊂ L. Here, ∅ and U will
denote the null and universal classes, respectively.

(K ∪ L): K ∪ L = L. Take x ∈ K ∪ L. Then either x ∈ K ⊂ L or x ∈ L, so
either way x ∈ L. Now take x ∈ L. Then x ∈ K ∪ L.

(K ∩ L): K ∩ L = K. Take x ∈ K ∩ L. Then x ∈ K. Now take x ∈ K. Then
K ⊂ L so x ∈ L also, and x ∈ K ∩ L.

(K ∪ U): Taking L = U, the same relation applies (since K ⊂ U for any class
K), so K ∪ U = U. See proof above.

(K ∩ U): Taking L = U, the same relation applies (since K ⊂ U for any class
K), so K ∩ U = K. See proof above.

(K ∪ ∅): Taking K = ∅, the same relation applies (since ∅ ⊂ K for any class
K), so ∅ ∪ L = L. See proof above.

(K ∩ ∅): Taking K = ∅, the same relation applies (since ∅ ⊂ K for any class
K), so ∅ ∩ L = ∅. See proof above.

Exercise 13.

For any classes K, L, M :

(a). K ⊂ K ∪ L and K ⊃ K ∩ L:

(K ⊂ K ∪ L): Take x ∈ K. Then x ∈ K ∪ L since the property x ∈ K ∨ x ∈ L
is true.

(K ⊃ K ∩ L): Take x ∈ K ∩ L. Then x ∈ K and x ∈ L, so x ∈ K.
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(b).

i︷ ︸︸ ︷
K ∩ (L ∪M) = (K ∩ L) ∪ (K ∩M) and

ii︷ ︸︸ ︷
K ∪ (L ∩M) = (K ∪ L) ∩ (K ∪M):

(i): We’ll prove each side contains the other:

(⊂): Let x ∈ K ∩ (L ∪ M). Then x ∈ K and x ∈ L ∪ M , so
x ∈ L or x ∈ M . If x ∈ L, then x ∈ K ∩ L. If x ∈ M , then
x ∈ K ∩M . Thus, either way x ∈ (K ∩ L) ∪ (K ∩M).

(⊃): Let x ∈ (K∩L)∪(K∩M). Then x ∈ (K∩L) or x ∈ (K∩M).
If x ∈ K ∩ L, then x ∈ K and x ∈ L. If x ∈ K ∩ M , then
x ∈ K and x ∈ M . In either case, x ∈ K, and all that’s left
is whether x ∈ L or x ∈ M . Then, no matter what, x ∈ K
and x ∈ L ∪M , so x ∈ K ∩ (L ∪M).

(ii): Again, we’ll prove each side contains the other:

(⊂): Let x ∈ K ∪ (L ∩ M). Then x ∈ K or x ∈ L ∩M . If
x ∈ K, then K ⊂ (K ∪L) by part (a) above, so x ∈ (K ∪L).
Similarly, K ⊂ (K ∪M), so x ∈ (K ∪M). Then for x ∈ K,
x ∈ (K ∪ L) ∩ (K ∪ M). If x ∈ (L ∩ M), then x ∈ L and
x ∈ M . Again by part (a), L ⊂ (K ∪ L) and M ⊂ (K ∪M),
so x ∈ (K ∪ L) ∩ (K ∪M).

(⊃): Let x ∈ (K ∪ L) ∩ (K ∪ M). Then x ∈ (K ∪ L), so x ∈ K
or x ∈ L. Also, x ∈ (K ∪ M), so x ∈ K or x ∈ M . If
x /∈ K, then x ∈ L and x ∈ M , so x ∈ L ∩ M , and by
part (a), (L ∩ M) ⊂ K ∪ (L ∩ M), so x ∈ K ∪ (L ∩ M).
Otherwise, x ∈ K, and again by part (a), K ⊂ K ∪ (L ∩M),
so x ∈ K ∪ (L ∩M).

(c). (K ′)′ = K:

(⊂): Let x ∈ (K ′)′. Then x /∈ K ′. We know K ′ ∪K = U. Then x ∈ U,
so x ∈ K or x ∈ K ′. Since x /∈ K, it must be that x ∈ K.

(⊃): Let x ∈ K. Then x /∈ K ′, so x ∈ (K ′)′.

(d).

i︷ ︸︸ ︷
(K ∪ L)′ = K ′ ∩ L′ and

ii︷ ︸︸ ︷
(K ∩ L)′ = K ′ ∪ L′:

(i): We’ll prove each side contains the other:
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(⊂): Let x ∈ (K ∪ L)′. Then x /∈ (K ∪ L) so x /∈ K, since by (a)
K ⊂ (K ∪ L) and similarly x /∈ L. Then x ∈ K ′ and x ∈ L′.
Thus x ∈ K ′ ∩ L′.

(⊃): Let x ∈ K ′ ∩L′. Then x /∈ K and x /∈ L. Then x /∈ K ∪ L so
x ∈ (K ∪ L)′.

(ii): Again, we’ll prove each side contains the other:

(⊂): Let x ∈ (K ∩ L)′. Then x /∈ K ∩ L. Thus x /∈ K or x /∈ L,
so x ∈ K ′ or x ∈ L′. By part (a), K ′ ⊂ (K ′ ∪ L′) and
L′ ⊂ (K ′ ∪ L′), so either way x ∈ (K ′ ∪ L′).

(⊃): Let x ∈ K ′ ∪ L′. Then x ∈ K ′ or x ∈ L′. Then if x /∈ K,
x /∈ K ∩ L so x ∈ (K ∩ L)′. But if x /∈ L, x /∈ K ∩ L so
x ∈ (K ∩ L)′ also.

Exercise 14.

The similary between the laws of sentential calculus and the laws of the
calculus of classes lies in two places. First being the ways that these laws
are formulated: since they take the form of sentential functions, usually of
equivalences or implications, then the truth of these laws depends on the
truth of these sub-functions. Thus, substituting true functions of sentential
calculus or calculus of classes can result in similarly formed laws.

The second cause of the similarity comes from the properties shared by
the operations utilized in each of these fields. The operations ∧ and ∩, for
example, both bear a similarity to multiplication, in that 0 (false or ∅) ex-
tinguishes 1 (true or U), and that they are commutative, transitive, and
distribute over addition. Similiarly, ∨ and ∪ bear a similarity to addition
in that 0 does not extinguish 1, and are commutative, transitive, and dis-
trubute over multiplication. Further, the opposition of the basic properties
True vs False and x ∈ K vs x /∈ K means that very similar statements can
be constructed using these operations.

The law of contraposition for the calculus of classes can be forumlated in
symbols as [(x ∈ P ) → (x ∈ Q)] → [(x ∈ Q′) → (x ∈ P ′)].

Exercise 15.

(a). The universal class:
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(i). U = C
x
[∃x]

(ii). x ∈ U ↔ ∃x

(b). The null class:

(i). ∅ = C
x
[x ∈ U′]

(ii). x ∈ ∅ ↔ x ∈ U′

(c). The product of two classes:

(i). K ∩ L = C
x
[x ∈ K ∧ x ∈ L]

(ii). x ∈ K ∩ L ↔ (x ∈ K ∧ x ∈ L)

(d). The complement of a class:

(i). K ′ = C
x
[x /∈ K]

(ii). x ∈ K ′ ↔ x /∈ K

Exercise 16.

This statement is true for a pentagon. This image might demonstrate
that:

Exercise 17.

(a). The expression ”the class K consists of two elements” might be ren-
dered:
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We say the class K consists of two elements if and only if
∀x, y, z ∈ K, (x = z ∨ y = z) ∧ (x ̸= y).

(b). The expression ”the class consists of three elements” might be rendered:

We say the class K consists of three elements if and only if
∀w, x, y, z ∈ K, [(w = x) ∨ (w = y) ∨ (w = z)] ∧ [(x ̸= y) ∧ (y ̸=

z) ∧ (x ̸= z)].

Exercise 18.

(a). This set consists of all n ∈ N such that 0 < n < 4, i.e. the set 1, 2, 3.
Then we can say that this is equinumerous with the subset of n ∈ N
such that n < 3, i.e. the set 0,1,2. We can see this by pairing off 0 with
1, 1 with 2, and 2 with 3. Thus, our set is equinumerous with a subset
of N, so it is finite.

(b). This set is infinite. To prove this, we’ll first suppose it was finite.
Then our class K would have n elements for some n ∈ N: that is,
K = {a0, a1, ..., an−1} where each ai ∈ Q has 0 < ai < 4 and ai−1 < ai.
Then construct a new element an = 4+an−1

2
. Then, an ∈ Q since it is a

ratio of two integers, and an < 4 since an−1 < 4, so an < 4+4
2

= 4. Then
an ∈ K. But this means that K actually must contain at least n + 1
elements, which contradicts our assumption that K contains exactly n
elements.

(c). This set is also infitite. I don’t believe that Tarski has provided us the
tools by which to prove this proposition (a definiton of the irrational
numbers, notions of countability or uncountability, decimal expansions
of real numbers, etc.), so I will not attempt to.
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