
Chapter 5 Exercises

Exercise 1.

arithmetic: Divisibility: we say xRy, or x divides y if ∃n ∈ N such that y = x · n

geometry : The relation of being complementary angles: ∠a and ∠b have ∠a R∠b
if the sum of ∠a and ∠b is 90°.

physics : The relation of velocity v = ∆d
∆t

, where ∆d is the change in displacement
of an object and ∆t is the change in time.

real life: The relation of being sisters: xSy if x and y are sisters.

Exercise 2.

The domain of the relation F is ”all x such that ∃y such that x is the
father of y”. That is, the domain is all fathers. Not every human is a father,
so the domain is not all of humanity. However, every human does have a
father, so all of humanity does belong to the co-domain.

Exercise 3.

(a). Defining names for familial relations:

(B̆): The relation xBy applies when x is a brother to y. We know when
xBy, yB̆x, so we could say B̆ is when y has a brother x. Thus B̆
is the relation of having a brother.

(H̆): The relation xHy applies when x is a husband to y. We know
when xHy, yH̆x, so we might say that y has a husband x. Tarski
might mean for this relation to have been called wife, but given
the increased popularity of gay marriage in the last hundred years,
I’ll call it having a husband or being a spouse.

(H ∪W ): The relation xH ∪Wy is satisfied when x is a husband or a wife
to y. Thus we might say that this is the relation of being a spouse.

(F ∪B): The relation xF ∪By is satisfied when x is the father of y or x is
the brother of y. This relation has no simple name in English.

(F/M): The relation x(F/M)y is satisfied when ∃z such that xFz and
zBy, that is: when x is the father of z, who is the mother of y.
This is the relation of x being maternal grandfather to y.
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(M/C̆): The relation x(M/C̆)y is satisfied when ∃z such that xMz and
zC̆y. Put another way, this is when x is mother of z, who in turn
has a child y. This is the relation of being grandmother (either
paternal or maternal).

(B/C̆): The relation x(B/C̆)y is satisfied when ∃z such that xBz and
zC̆y. This is when x is brother of z, who has a child y. This is
the relation of being uncle by blood.

(F/(H ∪W )): The relation x(F/(H ∪W ))y is satisfied when ∃z such that xFz
and z(H ∪W )y, or, when x is the father of z and z is the spouse
of y. This would mean x is the father-in-law to y.

: The relation x(B/C̆)∪[H/(S/C̆)]y is satisfied when either x(B/C̆)y
is satisfied (i.e. x is uncle by blood to y) or when x[H/(S/C̆)]y is
satisfied. Since (S/C̆) is the relation of being blood aunt (see sim-
ilarity to blood uncle), this is the relation of x being husband to
some z that is the blood aunt of y. In this case, x is also y’s uncle,
but related by marriage. Then the relation (B/C̆)∪ [H/(S/C̆)] is
that of being uncle either by blood or by marriage.

(b). Expressing familial relations in signs:

(being parent): x(F ∪M)y

(sibling): x(B̆ ∪ S̆)y

(grandchild): x(C̆/C̆)y

(daughter-in-law): x[[(H ∪W )/(M̆)] ∧ ¬(C̆)]y

(mother-in-law): x[M/(H ∪W )]y

(c). Explaining and verifying formulas:

(F ⊂ M ′): If xFy, then x is father to y. Then if xM ′y, x is not a mother to
y. Clearly, if x is a father to y, they cannot also be y’s mother.
Then this formula is true.

(B̆ = S): This is false. Suppose we have xSy where x and y are both the
other’s sister. Then xB̆y is false.

(F ∪M = C̆): This is true. x(F ∪M)y means x is a parent to y. Then xC̆y if
and only if yCx, i.e. if y is child to x. Then F ∪M ⊂ C̆. Now,
xC̆y means x has a child y, so then x(F ∪M)y is true since this
means that x is a parent to y.
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(H/M = F ): This is false. x(H/M)y means ∃z such that xHz, zMy. But then
x could be y’s stepfather. Thus it is not necessarily true that xFy.

(B/S ⊂ B): This is true. x(B/S)y means that ∃z such that xBz, zSy Then,
xBy also, since x, y, and z are all siblings.

(S ⊂ C/C̆): This is true. If xSy, then x is a sister to y. If xC/C̆y, then ∃z
such that xCz and zC̆y. That is, x is z’s child and z is y’s parent.
Then if x is y’s sister, this is certainly true.

Exercise 4.

For arbitrary relations R and S:

(a). The formula R/S = S/R does not hold for all relations. Consider the
relation xRy which holds when x = y2, and consider the relation xSy
which holds when x = y + 1. Then, x(R/S)y holds when x = (y + 1)2,
but x(S/R)y holds when x = y2 + 1. Thus R/S ̸= S/R.

(b). The formula ˘(R/S) = S̆/R̆ does hold for all relations. We will show

this by showing ˘(R/S) ⊂ S̆/R̆ and ˘(R/S) ⊃ S̆/R̆.

(⊂): Suppose x ˘(R/S)y. Then y(R/S)x, so ∃z such that yRz and zSx.
But then xS̆z and zR̆y, so x(S̆/R̆)y.

(⊃): Suppose x(S̆/R̆)y. Then ∃z such that xS̆z and zR̆y. Then yRz

and zSx, so y(R/S)x, and so x ˘(R/S)y.

Exercise 5.

For individuals x, y... and relations R, S...

(Universal Relation): xUy ↔ (∃x ∧ ∃y)

(Null Relation): xNy ↔ (¬(∃x) ∨ ¬(∃y))

(Inclusion): R ⊂ S ↔ [(xRy) → (xSy)]

(Equality): R = S ↔ [(xRy) → (xSy)] ∧ [(xSy) → (xRy)]

(Sum): R ∪ S ↔ (xRy) ∨ (xSy)

(Product): R ∩ S ↔ (xRy) ∧ (xSy)
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(Negation): xR′y ↔ ¬(xRy)

(Individual Equality): x|y ↔ [∀K, (x ∈ K ↔ y ∈ K)]

(Individual Diversity): xDy ↔ [∃K, (x ∈ K ∧ y ̸∈ K) ∨ (y ∈ K ∧ x ̸∈ K)]

(Composition): x(R/S)y ↔ [∃z, (xRz) ∧ (zSy)]

Exercise 6.

(a). This is reflexive. xRx since x = x · 1. This is transitive, since if xRy,
then y = x·n for some n ∈ N and if yRz, then z = y ·m for somem ∈ N.
Then z = (x ·n) ·m = (n ·m) ·x, so xRz. This is not symmetrical, since
1R2 but 2R′1. This is also not connected, since for any two relatively
prime numbers x and y, neither xRy nor yRx holds.

(b). The relation of being relatively prime is irreflexive, since x and x have a
GCD of x. It is symmetric, since xRy implies yRx (the GCD does not
change). Not transitive, since 2R3 and 3R4 but 2R′4. Not connected
either, since 2 and 4 have neither 2R4 nor 4R2.

(c). This is reflexive, transitive, symmetric, since congruence can be seen as
being equal in some property. However it is not connected, since there
exist non-congruent polygons.

(d). This is irreflexive (since nothing can be longer than itself), and asym-
metric (since if x is longer than y, y cannot be longer than x), and not
connected (since any x, y with equal length will have neither xRy nor
yRx). However, it is transitive: if x is longer than y and y is longer
than z, then x is also longer than z.

(e). This is irreflexive (since nothing can be perpendicular to itself) and
intransitive (since if x is perpendicular to y and y is perpendicular to
z, x and z are parallel), and not connected (since x and any parallel
y have neither xRy nor yRx). However it is symmetric, since if x is
perpendicular to y, y is also perpendicular to x.

(f). This is reflexive, since x ∩ x = x ̸= ∅. This is symmetric, since x ∩ y ̸=
∅ → y ∩ x ̸= ∅. This is not transitive, since (x ∩ y ̸= ∅) ∧ (y ∩ x ̸=
∅) ̸→ (x ∩ z ̸= ∅). This is also not connected, since any two disjoint
geometric configurations x and y have neither x∩ y ̸= ∅ nor y ∩ x ̸= ∅.
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(g). This is reflexive, since any physical event x happens simultaenously to
itself. This is symmetric, since if x and y happen simultaenously, y
and x happen simultaenously. This is also transitive, since if x and
y are simultaneous and y and z are simultaneous, then x and z are
also simultaneous. However it is not connected, since any two non
simultaneous events x and y have neither xRy nor yRx.

(h). This is irreflexive, since nothing can precede itself. This is also asym-
metric, since if x precedes y, y cannot precede x. This is, however,
transitive, since if x precedes y and y precedes z, then x precedes z as
well. This is also not connected, since any two simultaneous events x
and y have neither x preceding y nor y preceding x.

(i). This is reflexive, since one is related (in the same family) to oneself.
This is also symmetrical, since if x is related to y, y is also related to
x. This is also transitive, since if x is related to y and y is related to
z, x has a relation to z as well. This is not connected, since any two
unrelated people x and z have no relation in either direction.

(j). This is irreflexive, since no one can be their own father. This is also
asymmetric, since if x is y’s father, y cannot also be x’s father. This
is also intransive, since if x is y’s father and y is z’s father, x is not z’s
father but z’s grandfather. This is also not connected, since any two x
and y without familial relation have no relation in either direction.

Exercise 7.

(a). We want to show that (xRx) ∨ (xR′x) is true. If xRx is true, then
(xRx) ∨ (xR′x) is true. If xRx is false, then xR′x is true, so (xRx) ∨
(xR′x) is true. Thus (xRx) ∨ (xR′x) is always true.

(b). We want to show that [(xRy) → (yRx)]∨ [(xRy) → ¬(yRx)] is true. If
[(xRy) → (yRx)] is true, then [(xRy) → (yRx)] ∨ [(xRy) → ¬(yRx)]
is true. If [(xRy) → (yRx)] is false, then the antecedent (xRy) must
be true and the consequent (yRx) must be false. But then if yRx is
false, ¬(yRx) must be true. Then [(xRy) → ¬(yRx)] is true. Thus
[(xRy) → (yRx)] ∨ [(xRy) → ¬(yRx)] is always true.

Exercise 8.
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My solution to Exercise 6 has already considered the transitivity or in-
transitivity of its relations. Thus I will only print the considerations for
Exercise 3 here.

(B̆): This is transitive: xB̆y ∧ yB̆z → xB̆z since x has brother y and z is
y’s brother.

(H̆): This is intransitive with polygamy: xH̆y ∧ yH̆z ̸→ xH̆y since if x has
husband y, who in turn has husband z, then this does not necessarily
imply xH̆z. However, if polygamy is not permitted, then x = z and
this is transitive.

(H ∪W ): Intransitive, since (assuming x ̸= z) if x is the spouse of y and y is the
spouse of z, that doesn’t necessarily imply that x has z as a spouse as
well.

(F ∪B): This is intransitive, since xF ∪By∧yF ∪Bz could have xFy and yFz.
But then xFz would be false.

(F/M): This is intransitive, since if x is y’s maternal grandfather, and y is z’s
maternal grandfather, then x cannot also be z’s maternal grandfather
since x would be z’s maternal great-great-grandfather.

(M/C̆): If x is y’s grandmother and y is z’s grandmother, does this imply x is z’s
grandmother? No, since this would mean x is z’s great-grandmother.
Thus this relation is intransitive.

(B/C̆): If x is y’s blood uncle and y is z’s blood uncle, then ¬[x(B/C̆)z] since
x is z’s great-uncle. Thus intransitive.

(F/(H ∪W )): If x father-in-law to y and y is father in law to z, then x is not father-
in-law to z. Then intransitive.

: If x is uncle to y and y is uncle to z, then x is not z’s uncle, since they
would be either unrelated (if x is blood uncle and y is marital uncle,
or vice versa) or x would be z’s great uncle (if x and y are both blood
uncles). Thus intransitive.

Exercise 9.

In both cases, this is basically the process of (having defined some property-
class Kx for an individual x) showing that xRy means Lx ⊂ Ly and Ly ⊂ Lx.
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(parallel): Let P represent the relation of being parallel. Then, ”the lines a and b
are parallel” means aPb. Then, P is reflexive (since aPa for all straight
lines a), symmetric (since if aPb, bPa) and transitive (since if aPb and
bPc, aPc). Then, define the class Ka = {b, aPb}. Then, any straight
line x is in at least one such class (xPx, so x ∈ Kx), and at most one
such class as well: ∀x, a, b such that x ∈ Ka and x ∈ Kb, then aPx and
bPx. Then P is symmetric, so xPb, and since P is transitive, then aPb
and bPa. Thus a ∈ Kb and b ∈ Ka, so Ka = Kb. It follows that any
two parallel lines share the same class: if aPb, then bPa also, so a ∈ Kb

and b ∈ Ka. But then a ∈ Ka and b ∈ Kb also, so since each line can
be a member of at most one class, it must be Ka = Kb. Also, any
two non-parallel lines are in different classes: if aP ′b then a ̸∈ Kb and
bP ′a so b ̸∈ Ka. Thus Ka ̸= Kb. Thus, calling Ka the ”direction of the
straight line a”, we can say that aPb thus also implies the expression
”the directions of the lines a and b are identical”.

(congruent): Let C represent the relation of being parallel. Then ”the segments
ab and cd are congruent” means abCcd. C is reflexive (since abCab),
symmetric (since abCcd → cdCab), and transitive (since if abCcd ∧
cdCef , abCef). Then, define the class Lxy = {ab, xyCab}. Then,
every segment ab is member of at least one such class, since ab ∈ Lab,
and is member of at most one also: if ab ∈ Lxy and ab ∈ Lwz, then
xyCab and wzCab, and thus abCwz. Then C is transitive, so xyPwzW ,
and so Lxy = Lwz. From this it also follows that any two congruent
segments share classes, and that if abC ′cd, then Lab ̸= Lcd. Then, call
Lxy the ”length of the line segment xy”, we can say that abCcd implies
the expression ”the length of the segments ab and cd are identical”.

Exercise 10.

The formula x + y = y + x consists of 7 signs: x, +, y, =, y, +, and x.
Then, if E denotes the relation of being equiform, a ∈ {x,+, y,=, y,+, x}
has aEa, if aEb then bEa, and if aEb and bEc, then aEc. Then, we can call
the class Fa = b, aEb the ”form of the sign a”. Since E is reflexive, symmetric
and transitive, it follows (as seen in Exercise 9) that each sign is in exactly
one form-class, that equiform signs share classes, and non-equiform signs are
in different classes. Then, for a ∈ {x,+, y,=, y,+, x}, there are four classes:
Fx, Fy, F+, F= corresponding to the first four signs in the expression. Then,
the last three symbols have y ∈ Fy, + ∈ F+, and x ∈ Fx. Then, as we
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have already seen, E is reflexive, symmetric, and transitive. Further it is
not connected, since non-equiform signs x and y have neither xEy nor yEx.
As for non-equiformity (E ′), it is irreflexive, since ¬xE ′x. However, it is
symmetric, since if aE ′b, then bE ′a as well. It is not transitive, since if xE ′y
and yE ′z, xEz could still be true. It is also not connected, since any two
equiform a, b have neither aE ′b nor bE ′a.

Exercise 11.

In Exercise 10, I referred to the class Fa for a sign a as the ”form of the
sign a”. Since equiform varibles are members of the same Fa, it can be said
that they are equal with respect to their form.

To be more precise about the situation concerning equiform variables, for
an expression x+x, instead of saying that the same variable occurs on either
side of the sign ”+”, we might say instead that the variables on either side
of the sign have identical form, or that they are equiform.

Exercise 12.

On page 12, there are many sentences that might be amended in light of
the impreciseness in speech that was discussed in Exercise 11. One example
would be the statement ”in both cases where the variable ’z’ appears”, which
might be amended to ”in both cases where variables equiform to ”z” appear”.

On page 56, a sentence reads ”it is understood that, should ”x” occur at
several places in the formula”, which might be changed to ”...should variables
equiform to ”x occur at several places in the formula” or similar.

To more precisely formulate the expression ”sentential functions with
two free variables”, we might instead write ”sentential functions with free
variables of two forms” or similar.

Exercise 13.

We say a relation R establishes an ordering if it is asymmetric, transitive,
and connected. For a point O, consider KO = {C, C is a circle centered at
O}. For each C ∈ KO, let rC be the radius of C. Now consider the relation
P in the set KO, where two circles a and b have aPb if a is a part of b, i.e. if
a ⊂ b. Since each a has a = {x, O < dist(O, x) < ra}, a ⊂ b ↔ ra < rb

(a). P is asymmetric: if aPb then bP ′a, since if aPb, then ra < rb. In fact
we cannot have bPa, since then ra > rb, but this is false.
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(b). P is transitive: Suppose we have a, b, and c with aPb and bPc. Then
ra < rb and rb < rc. Then ra < rc also, so aPc.

(c). P is connected: For any two arbitrary a, b distinct within KO, we want
to show that either aPb or bPa is always true. If aPb is true, then
we’re done. Otherwise, if aP ′B, then ra ̸ <rb. We know ra ̸= rb since
a and b are distinct, so it must be that ra > rb, so bPa.

If the circles did not lie in the same plane, then P would not establish an
ordering, since it would not have the property of connectedness: for a in the
xy plane and b in the yz plane, for instance, neither aPb nor bPa hold.

The case is similar for the case of non-concentric circles, since two circles
a, b might be disjoint, so that neither aPb nor bPa holds.

Exercise 14.

First, placing the list of words in lexiographical order, we have:

arm, army, art, ask, car, care, sale, salt, trouble

We now attempt to give a general definition of the relation Preceding, writ-
ten aPb for two words a and b. To assist in the definition, we’ll say that
word a is n letters long and can be written a = {a0, a1, ..., an−1}, and b is m
letters long and can be written b = {b0, b1, ..., bm−1}.

Then, we say aPb if, starting from i = 0:

(-) If ai < bi, then aPb

(-) If bi < ai, then bPa

(-) If ai = bi then consider the case of i = i+ 1

(-) If ai does not exist and bi does, then aPb. If bi does not exist and ai
does, then bPa.

Now, we’ll show P establishes an ordering, i.e. that it is asymmetric,
transitive, and connected.

(a). P is asymmetric: If aPb, then ∃aiPbi and all j < i have ajPbj. Thus
bP ′a, since bi≤ai cannot be the case.
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(b). P is transitive: If aPb ∧ bPc, then ∃ai < bi and all j < i have aj<bj
and ∃bh < ch and all k < h have ak≤bk.

(c). P is connected: If a and b are both words that are not equal, then
select the first place where they differ and call it index i. Then ai ̸= bi
so either ai < bi or bi < ai, so either aPb or bPa.

Exercise 15.

(a). Suppose ∀x ∈ K that xRx. Then we want to show ¬(xR′x). If xR′x,
then we would have ¬(xRx), but this is not the case. Thus ¬(xR′x),
so R′ is irreflexive.

(converse): Suppose ¬(xR′x). Then xRx is true.

(b). Suppose xRy → yRx. Then, replace x by y and vice versa to get
yRx → xRy. Then, by the law of contraposition, this gives the true
expression ¬(xRy) → ¬(yRx), which in turn can be replaced by the
equivalent terms xR′y → yR′x. Then R′ is asymmetric

(converse): Suppose R′ is symmetrical. Then xR′y → yR′x, and replacing y by x
and x by y we get yR′x → xR′y. Then the law of contraposition gives
the true sentence xRy → yRx.

(c). Suppose xRy → ¬(yRx). Replace y with x in is sentence to get xRx →
¬(xRx), i.e.xRx → (xR′x) Then, xRx∧xR′x is false and xRx∨xR′x is
true, the only way for xRx → ¬(xRx) to be true is if xRx is false and
xR′x is true. Then R′ is reflexive. Now, we to show R′ is connected,
which is to say that xR′y ∨ yR′x is true. consider any x, y ∈ K. Then
either xRy or xR′y. If xRy, xRy → yR′x since R is asymmetrical,
so yR′x is true, so xR′y ∨ yR′x is true. Otherwise we have xR′y and
xR′y ∨ yR′x is true.

(converse): Suppose R′ reflexive, connected. Then xR′x and xR′y∨yR′x∀x, y ∈ K.
Then suppose xRy. Then xR′y is false, so yR′x must be true. But then
xRy → yR′x is true, so R is asymmetrical.

(d). Suppose for all x, y ∈ K that xRy ∧ yRx → xRz and xRy ∨ yRx are
true.

(converse): Suppose R′ is transitive: that is xR′y ∧ yR′z → xR′z.
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Exercise 16.

(reflexivity): Suppose xRx. We want to show xR̆x. This follows immediately from
the property that xRy → yR̆x by replacing x by y.

(irreflexivity): Suppose ¬(xRx). Then xR′x We want to show xR̆′x. This follows
immediately from the property that xR′y → yR̆′x by replacing x by y.

(symmetry): Suppose xRy → yRx. Then, if xRy we also have yR̆x, and since we
have yRx, we also have xR̆y. Then xR̆y → yR̆x is a true sentence.

(asymmetry) Suppose xRy → ¬yRx. Then if xRy, yR̆x. By the law of contrapo-
sition we have yRx → ¬(xRy). Then yRx is equivalent to xR̆y and
¬(xRy) is equivalent to ¬(yR̆x) so we have xR̆y → ¬(yR̆x).

(transitivity): Suppose xRy ∧ yRz → xRz. Replace x by z and z by x to get zRy ∧
yRx → zRx. Then, zRy ∧ yRx ↔ yRx ∧ zRy. Also, yRx ↔ xR̆y,
zRy ↔ yR̆z, and zRx ↔ xR̆z. Then we have xR̆y ∧ yR̆z → xRz.

(intransitivity): Suppose xRy ∧ yRz → ¬(xRz). Replace x by z and z by x to get
zRy ∧ yRx → ¬(zRx). Then, zRy ∧ yRx ↔ yRx∧ zRy. Also, yRx ↔
xR̆y, zRy ↔ yR̆z, and ¬(zRx) ↔ ¬(xR̆z). Then we have xR̆y∧yR̆z →
¬(xRz).

(connectedness): Suppose xRy ∨ yRx. If xRy then yR̆x and xR̆y ∨ yR̆x is true. Else we
have yRx, so xR̆y and xR̆y ∨ yR̆x is true.

(unconnectedness): Suppose ∃x, y ∈ K such that xR′y ∧ yR′x. Then xR′y → ¬(yR̆x) and
yR′x → ¬(xR̆y) so ¬(xR̆y) ∧ ¬(yR̆x).

Exercise 17.

(-) R/R ⊂ R expresses transitivity, since xR/Ry means ∃z such that xRz
and zRy. Then, we say R ⊂ S if xRy → xSy. Then, R/R ⊂ R
would express the implication xRz ∧ zRy → xRy, which we know as
transitivity.

(-) D ⊂ R ∪ R̆ expresses connectedness since xDy means x and y are
distinct individuals. Then x(R∪R̆)y means xRy∨xR̆y, i.e. xRy∨yRx.
Then D ⊂ R ∪ R̆ would express the implication xDy → xRy ∨ yRx,
which is connectedness.
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(-) R/R̆ ⊂ I is to say xR/R̆y → xIy. Then, xR/R̆y means ∃z such that
xRz and zR̆y. But then zR̆y ↔ yRz, and we have xRz ∧ yRz. Then
R/R̆ ⊂ I expresses the implication xRz ∧ yRz → xIy which we know
as Theorem V from Section 17.

(symmetry): This can be expressed R ⊂ R̆: since xR̆y is equivalent to yRx, we have
the implication xRy → yRx.

(asymmetry): This can be expressed R ⊂ ¬R̆: ¬(xR̆y) is equivalent to ¬(yRx), so
we have the implication xRy → ¬(yRx).

(intransitivity): This can be expressed R/R ⊂ R′: xR/Ry means ∃z such that xRz and
zRy, so we have the implication xRz ∧ zRy → xR′y.

Exercise 18.

(a). To better observe the relation expressed by 2x+3y = 12, we’ll rearrange
the formula to get x = 12−3y

2
. Then this is a function if for any y, there

is at most one x that can have xRy. In other words if x = R(y) and b =
R(y) then x = b, or if 12−3y

2
= 12−3y

2
always. Simplifying this equality

yields 2 · 12−3y
2

= 2 · 12−3y
2

↔ 12− 3y = 12− 3y ↔ 12− 3y − 12 =
3y ↔ 3y = 3y ↔ y = y. Then this is a function.

(b). This is a function if x =
√

y2 and z =
√
y2 implies x = z always. This is

not the case, however, since z = −x also has zRy, since z = −x =
√

y2

has (−x)2 = (x)2 = y2, so R is not a function.

(c). Suppose x > y − 5 and z > y − 5. Is it the case that x = z? No, since
for any x such that x > y − 5, let z = x+ 1. Then z > y − 5 also.

(d). This can be rearranged x = y2 − y. Then if x = y2 − y and z = y2 − y,
does x = z? This would mean for a given y that y2− y = y2− y, which
is true, so this is a function.

(e). If x is the mother of y and z is the mother of y, does this imply x = z?
Speaking of the birth relation, yes, since any human y can only have
one birth mother. Then this is a function.

(f). If x is the daughter of y and z is the daughter of y does this imply
x = z? No, since it could be the case that y has two daughters x and
z. Then this is not a function.

12



Now, for the relations in Exercise 3:

(B̆): If x has brother y and z has brother y does this imply x = z? No, since
y could have two siblings. So not a function.

(H̆): Does xH̆y and zH̆y imply x = z? Tarksi probably meant the answer
to be yes, since in the paradigm of monogamy y would only be husband
to one person. Thus, to Tarksi, this was probably a function. In 2025,
however, the situation is more complicated...

(H ∪W ): If x(H ∪ W )y and z(H ∪ W )y does this imply x = z? Again, Tarksi
probably meant the answer to be yes, since a married y would have one
spouse. So this is a function. In 2025, however, the situation is more
complicated...

(F ∪B): Not a function, since x(F ∪B)y and z(F ∪B)y does not imply z = x.
It could be that x is father to y and z is brother to y. But then x ̸= z.

(F/M): If x is maternal grandfather to y and z is maternal grandfather to y,
this does imply x = z, since any person y can only have one maternal
grandfather.

(M/C̆): Not a function, since if x is (either maternal or paternal) grandmother
to y and z is (either maternal or paternal) grandmother to y, then it
could be that (for instance) x is paternal grandmother to y and z is
maternal grandmother to y. Then x ̸= z.

(B/C̆): Not a function, since xB/C̆y and zB/C̆y could have x paternal uncle
to y and z maternal uncle to y. Then x ̸= z.

(F/(H ∪W )): This was probably a function to Tarski, since if x[F/(H ∪ W )]y and
z[F/(H ∪W )]y then this means x is the father of y’s spouse and z is
the father of y’s spouse. It was probably assumed that y would only
have one spouse, so then x = z.

: This is not a function, since we could have x(B/C̆y) and z(H/S̆/C̆)y.
Then x ̸= z Since x would be a blood uncle and z would be an uncle
related by marriage.

Exercise 19.
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We usually assume the set of all argument values to be the set of real
numbers, but it could hypothetically be any set of numbers. The set of all
function values is K = {x|x ∈ R, x ≥ 1} since for all y ∈ R, y2 ≥ 0. Then
y2 + 1 ≥ 1.

Exercise 20.

The functions in Exercise 18 were items (a), (d), and (e). In general,
to prove a function is biunique, we’ll verify that it’s inverse formula is a
function: replace x by y and y by x and then solve for x.

(a): First find and verify the inverse formula: Suppose xRy if x = 12−3y
2

.
Then replace y by x and vice versa: y = 2x + 1. Then solve for x
to get x = 12−2y

3
. Now verify this: we should have xRy ↔ yR̆x, so

x = 12−3y
2

↔ y = 12−2x
3

. Then y =
12−2 12−3y

2

3
↔ y = 12−(12−3y)

3
↔ y =

12−(12−3y)
3

↔ y = 3y
3

↔ y = y. Then this function is biunique as any
given function value x permits only one argument value y.

(d):

(e): If xMy is the relation x is the mother of y, then xM̆y would mean
yMx, or y is the mother of x. Then xM̆y could be phrased x has
mother y. Suppose xM̆y and zM̆y. If M is biunique, then this should
imply x = z. However, this is not the case, since it could be that x and
z are siblings with mother y.

Exercise 21.

Let xRy if x = 3y + 1. We want to show this is a biunique function.
Replacing x by y and y by x and solving for x we get x = y−1

3
. Then if xRy,

we should have yR̆x, so suppose that y = x−1
3
. Then y = 3y+1−1

3
↔ y = 3y

3
↔

y = y. Then this is a biunique function.

Now, suppose y ∈ [0, 1]. What can x be? If yi, yj ∈ [0, 1] with yi < yj,
then R(yi) < R(yj) since 3(yi)+1 < 3(yj)+1. Then if y = 0, x = 3(0)+1 = 1.
If y = 1, x = 3(1) + 1 = 4. Thus x = R(y) has x ∈ [1, 4]. Then, pick
any x ∈ [1, 4], and we’ll show that a unique y ∈ [0, 1] exists such that
x = R(y). If x ∈ [1, 4], let y = x−1

3
. This always exists in [0,1] since x ≥ 1

so y ≥ 1−1
3

= 0 and x ≤ 4 so y ≤ 4−1
3

= 1. Then this y has x = R(y):
3(x−1

3
) + 1 = (x− 1) + 1 = x.
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Exercise 22.

Let xRy if x = 2y. Then let y ∈ R. First, show xR̆y is a function: replac-
ing x by y and y by x and solving for x we get x = log2 y. Then, if xRy we
should have yR̆x: Consider y = log2 x. Then, we have y = log2 2

y ↔ y = y,
so this is a biunique function.

Now, for y ∈ R, if y = 0, x = 20 = 1. If y < 0, y = −m for some m > 0
and we have x = 2−m = 1

2m
∈ [0, 1], If y > 0, x = 2y > 1. Thus x is always

positive. Now, for any x > 0, we’ll show ∃y with x = R(y): let y = log2 x.
Then x = 2log2 x = x. Thus, any real number y can be mapped to a positive
number x (or vice versa) in a one-to-one manner.

Exercise 23.

In the class N, Consider the relation xRy that holds if x = 2y + 1 is sat-
isfied. This is a function: if x = 2y + 1 and z = 2y + 1 we should have that
x = z. This is the case since 2y+1 = 2y+1 ↔ 2y = 2y ↔ y = y always. This
is also biunique: replacing x by y and y by x and solving for x we get x = y−1

2
.

Then if xRy, we should have yx̆. Consider y = (2y+1)−1
2

↔ y = 2y
2
↔ y = y.

Then this is biunique.

Then for y ∈ N, x = 2y + 1 is always odd: if x was even, then x = 2m
for some m ∈ M, but then 2m = 2y + 1 would give m = y + 1

2
, so m ̸∈ N -

a contradiction. Thus for any x odd, ∃y with x = R(y): let y = x−1
2
. Then

x = 2(x−1
2
) + 1 ↔ x = x− 1+1 ↔ x = x. Then this is a one-to-one mapping

between the set of all natural numbers and the set of all odd numbers.

Exercise 24.

(geometry): The Pythagorean Theorem is an example. For the class of ”sides of a
triangle T”, we say R(a, b, c) if a2 + b2 = c2.

(arithmetic): The relation of being a multiple: for the set Z of integers, we say x is
a multiple of y and z if x = n · y +m · z for some m,n ∈ Z.

Exercise 25.

(a). If x + y + z = 0 and w + y + z = 0, then w = y + z = x, so this is a
function.
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(b). This is not a function. Let y = 0, z = −1. Then x > −2 and w > −2
does not imply x = w, since x = 1 has 0 > −2 but w = 2 also has
0 > −2.

(c). This is not a function. Suppose x = R(y, z) and w = R(y, z). Then
this should imply x = w. But x =

√
y2 + z2 and w = −

√
y2 + z2 both

have x2 = y2 + z2 and w2 = y2 + z2 even though x ̸= w.

(d). This is a function. Suppose x = R(y, z) and w = R(y, z), then x =
y2+z2−2 and w = y2+z2−2. Label n = y2+z2. Then x = n−2 = w.

Exercise 26.

(two-terms): The relation of something’s weight: W = m ∗ 9.8m
s2

where W is weight
of an object and m is its mass.

(three-terms): The relation defined in Newton’s Second Law: F = m · a where F is
force, m is the mass of the object, and a is its acceleration.

(four-terms): The relation defined as the Lorenz force: F = q(v × B + E) where
F is the force, q is a given charge, v is the velocity of the charge, E
is the direction of the electric field, and B is the vector signifying the
direction of magnetic induction.
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